Publicación:
Lyapunov exponents on metric spaces

dc.contributor.author Morales, C. A. es_PE
dc.contributor.author Thieullen, P. es_PE
dc.contributor.author Villavicencio, H. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2017
dc.description.abstract We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.
dc.description.sponsorship Fondo Nacional de Desarrollo Científico y Tecnológico - Fondecyt
dc.identifier.doi https://doi.org/10.1017/S0004972717000703
dc.identifier.uri https://hdl.handle.net/20.500.12390/2881
dc.language.iso eng
dc.publisher Cambridge University Press (CUP)
dc.relation.ispartof BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY
dc.rights info:eu-repo/semantics/openAccess
dc.subject pointwise Lipschitz constant
dc.subject metric space es_PE
dc.subject.ocde http://purl.org/pe-repo/ocde/ford#1.01.01
dc.title Lyapunov exponents on metric spaces
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
Archivos