Publicación:
Lyapunov exponents on metric spaces
Lyapunov exponents on metric spaces
No hay miniatura disponible
Fecha
2017
Autores
Morales, C. A.
Thieullen, P.
Villavicencio, H.
Título de la revista
Revista ISSN
Título del volumen
Editor
Cambridge University Press (CUP)
Proyectos de investigación
Unidades organizativas
Número de la revista
Abstracto
We use the pointwise Lipschitz constant to define an upper Lyapunov exponent for maps on metric spaces different to that given by Kifer ['Characteristic exponents of dynamical systems in metric spaces', Ergodic Theory Dynam. Systems 3(1) (1983), 119-127]. We prove that this exponent reduces to that of Bessa and Silva on Riemannian manifolds and is not larger than that of Kifer at stable points. We also prove that it is invariant along orbits in the case of (topological) diffeomorphisms and under topological conjugacy. Moreover, the periodic orbits where this exponent is negative are asymptotically stable. Finally, we estimate this exponent for certain hyperbolic homeomorphisms.
Descripción
Palabras clave
pointwise Lipschitz constant,
metric space