Publicación:
Numerical analysis of bonding between masonry and steel reinforced grout using a plastic–damage model for lime–based mortar

No hay miniatura disponible
Fecha
2020
Autores
Salsavilca J.
Tarque N.
Yacila J.
Camata G.
Título de la revista
Revista ISSN
Título del volumen
Editor
Elsevier Ltd
Proyectos de investigación
Unidades organizativas
Número de la revista
Abstracto
This paper shows a numerical investigation with single-lap shear bond tests between Peruvian brick masonry and SRG system. For this purpose, the finite element method, elements and constitutive models implemented in ABAQUS library were used. Eight-node continuum elements were employed for modelling mortar, masonry and steel fibers assuming a linear-elastic behaviour for the last two materials. Eight-node cohesive elements with zero-thickness were used to model substrate-mortar and steel-mortar interfaces. Due to experimental results showed the detachment of the steel fiber from the mortar accompanied by cracking of the outer mortar layer, the non-linearity of the mortar was also considered by using a Concrete Damage Plasticity constitutive model. The effect of the mortar non-linearity was compared with other models assuming a linear and rigid material for mortar, as recommended by literature. This shows that modelling a non-linear mortar leads to more accurate results for future design and strengthening purposes, thus, its implementation is encouraged. A comparison in time between Bond–Slip Law (BSL) at steel–mortar interface and mortar constitutive law is analysed in order to investigate the stress-transfer mechanism during single–lap shear tests.
Descripción
Palabras clave
SRG, Bond behaviour, Masonry, Non-linear mortar, Numerical model
Citación