Publicación:
Reconocimiento de acciones cotidianas

dc.contributor.author Vizconde La Motta, Kelly es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2016
dc.description.abstract The proposed method consists of three parts: features extraction, the use of bag of words and classification. For the first stage, we use the STIP descriptor for the intensity channel and HOG descriptor for the depth channel, MFCC and Spectrogram for the audio channel. In the next stage, it was used the bag of words approach in each type of information separately. We use the K-means algorithm to generate the dictionary. Finally, a SVM classi fier labels the visual word histograms. For the experiments, we manually segmented the videos in clips containing a single action, achieving a recognition rate of 94.4% on Kitchen-UCSP dataset, our own dataset and a recognition rate of 88% on HMA videos.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.uri https://hdl.handle.net/20.500.12390/2060
dc.language.iso spa
dc.publisher Universidad Católica San Pablo
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri http://creativecommons.org/licenses/by-nc/4.0/
dc.subject SVM
dc.subject STIP es_PE
dc.subject HOG es_PE
dc.subject Spectogram es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.02.01
dc.title Reconocimiento de acciones cotidianas
dc.type info:eu-repo/semantics/masterThesis
dspace.entity.type Publication
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
Archivos