Reconocimiento de acciones cotidianas

No hay miniatura disponible
Vizconde La Motta, Kelly
Título de la revista
Revista ISSN
Título del volumen
Universidad Católica San Pablo
Proyectos de investigación
Unidades organizativas
Número de la revista
The proposed method consists of three parts: features extraction, the use of bag of words and classification. For the first stage, we use the STIP descriptor for the intensity channel and HOG descriptor for the depth channel, MFCC and Spectrogram for the audio channel. In the next stage, it was used the bag of words approach in each type of information separately. We use the K-means algorithm to generate the dictionary. Finally, a SVM classi fier labels the visual word histograms. For the experiments, we manually segmented the videos in clips containing a single action, achieving a recognition rate of 94.4% on Kitchen-UCSP dataset, our own dataset and a recognition rate of 88% on HMA videos.
Palabras clave
SVM, STIP, HOG, Spectogram