Bienvenido al Repositorio Institucional del Concytec

El Repositorio Institucional del Concytec tiene como objetivo permitir el libre acceso a la producción científica institucional, optimizando su visibilidad; así mismo garantizar la preservación y conservación de la información relacionada a la ciencia, tecnología e innovación.

Display.item.jsp


Por favor, utiliza este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12390/3075


Campo DCValorIdioma
dc.contributor.authorEstacio L.es_PE
dc.contributor.authorEhlke M.es_PE
dc.contributor.authorTack A.es_PE
dc.contributor.authorCastro E.es_PE
dc.contributor.authorLamecker H.es_PE
dc.contributor.authorMora R.es_PE
dc.contributor.authorZachow S.es_PE
dc.date.accessioned2021-11-18T02:56:01Z-
dc.date.available2021-11-18T02:56:01Z-
dc.date.issued2021-
dc.identifier.issn1945-7928-
dc.identifier.urihttp://hdl.handle.net/20.500.12390/3075-
dc.description.abstractWe present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data. © 2021 IEEE.es
dc.description.sponsorshipThis work was supported by grant 234-2015-FONDECYT (Master Program) from Cienciactiva of CONCYTEC-PERU and German BMBF research campus MODAL (grant no. 3FO18501). The authors thank CiTeSoft-UNSA for the database access. The authors report no conflicts of interest.-
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherIEEE Computer Societyes_PE
dc.relation.ispartofProceedings - International Symposium on Biomedical Imaginges
dc.rightsinfo:eu-repo/semantics/closedAccesses
dc.subjectAnomaly detection; Generative models; Pelvic radiographs; Unsupervised learninges_PE
dc.titleUnsupervised detection of disturbances in 2D radiographses
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.1109/ISBI48211.2021.9434091-
dc.identifier.scopus2-s2.0-85107194158-
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#3.02.12-
dc.relation.isFundedByCONV-000234-2015-FONDECYT-DE - PROMOCION 1es
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
item.fulltextNo texto completo-
item.grantfulltextnone-
item.languageiso639-1en-
Colección:2.2 Estudios de maestría
Registro simplificado



Páginas vistas

36
marcado en 14-may-2022

Google ScholarTM

Check

Altmetric

  • Compartir este item
  • QR Code

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.