Publicación:
Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior

dc.contributor.author Carvalho, Silas L. es_PE
dc.contributor.author Condori, Alexander es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2021
dc.description.abstract In this paper, we show that, for topological dynamical systems with a dense set (in the weak topology) of periodic measures, a typical (in Baire's sense) invariant measure has, for each q>0, zero lower q-generalized fractal dimension. This implies, in particular, that a typical invariant measure has zero upper Hausdorff dimension and zero lower rate of recurrence. Of special interest is the full-shift system (X,T) (where X=Mℤ is endowed with a sub-exponential metric and the alphabet M is a compact and perfect metric space), for which we show that a typical invariant measure has, for each q>1, infinite upper q-correlation dimension. Under the same conditions, we show that a typical invariant measure has, for each s∈(0,1) and each q>1, zero lower s-generalized and infinite upper q-generalized dimensions. © 2021 Walter de Gruyter GmbH, Berlin/Boston 2021.
dc.description.sponsorship Fondo Nacional de Desarrollo Científico y Tecnológico - Fondecyt
dc.identifier.doi https://doi.org/10.1515/forum-2020-0023
dc.identifier.scopus 2-s2.0-85100073370
dc.identifier.uri https://hdl.handle.net/20.500.12390/2384
dc.language.iso eng
dc.publisher De Gruyter Open Ltd
dc.relation.ispartof Forum Mathematicum
dc.rights info:eu-repo/semantics/openAccess
dc.subject invariant measures
dc.subject correlation dimension es_PE
dc.subject Full-shift over an uncountable alphabet es_PE
dc.subject generalized fractal dimensions es_PE
dc.subject.ocde http://purl.org/pe-repo/ocde/ford#2.02.03
dc.title Generalized fractal dimensions of invariant measures of full-shift systems over compact and perfect spaces: Generic behavior
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
Archivos