Publicación:
A unified splitting algorithm for composite monotone inclusions

dc.contributor.author Oré-Albornoz E. es_PE
dc.contributor.author Mahey P. es_PE
dc.contributor.author Ocaña-Anaya E. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2020
dc.description.abstract Operator splitting methods have been recently concerned with inclusions problems based on composite operators made of the sum of two monotone operators, one of them associated with a linear transformation. We analyze here a general and new splitting method which indeed splits both operator proximal steps, and avoiding costly numerical algebra on the linear operator. The family of algorithms induced by our generalized setting includes known methods like Chambolle-Pock primal-dual algorithm and Shefi-Teboulle Proximal Alternate Direction Method of Multipliers. The study of the ergodic and non ergodic convergence rates show similar rates with the classical Douglas-Rachford splitting scheme. We end with an application to a multi-block convex optimization model which leads to a generalized Separable Augmented Lagrangian Algorithm.
dc.description.sponsorship Fondo Nacional de Desarrollo Científico y Tecnológico - Fondecyt
dc.identifier.scopus 2-s2.0-85076421839
dc.identifier.uri https://hdl.handle.net/20.500.12390/2620
dc.language.iso eng
dc.publisher Heldermann Verlag
dc.relation.ispartof Journal of Convex Analysis
dc.rights info:eu-repo/semantics/openAccess
dc.subject Splitting methods
dc.subject Convergence analysis es_PE
dc.subject Monotone inclusions es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.01.02
dc.title A unified splitting algorithm for composite monotone inclusions
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
Archivos