Design of a mobile robot’s control system for obstacle identification and avoidance using sensor fusion and model predictive control

No hay miniatura disponible
Barreto Guerra, Jean Paul
Título de la revista
Revista ISSN
Título del volumen
Pontificia Universidad Católica del Perú
Proyectos de investigación
Unidades organizativas
Número de la revista
The aim of this master thesis is to design a control system based on model predictive control (MPC) with sensor data fusion for obstacle avoidance. Since the amount of obtained data is larger due to multiple sensors, the required sampling time has to be larger enough in comparison with the calculation time of the optimal problem. Then it is proposed a simplification of the mobile robot model in order to reduce this optimization time. The sensor data fusion technique uses the range information of a laser scanner and the data of a mono-camera acquired from image processing techniques. In image processing different detection algorithms are proposed such as shape and color detection. Therefore an estimation of the obstacles dimension and distance is explained obtaining accurate results. Finally a data fusion for obstacle determination is developed in order to use this information in the optimization control problem as a path constraint. The obtained results show the mobile robot behavior in trajectories tracking and obstacle avoidance problems by comparing two different sampling times. It is concluded that the mobile robot reaches the final desired position while avoiding the detected obstacles along the trajectory.
Palabras clave
Sensores remotos, Control automático, Control predictivo, Robots móviles