Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications Fern´Andez-P´Erez A. es_PE T´Amara J. es_PE 2024-05-30T23:13:38Z 2024-05-30T23:13:38Z 2020
dc.description.abstract Let F be a singular codimension one holomorphic foliation on a compact complex manifold X of dimension at least three such that its singular set has codimension at least two. In this paper, we determine Lehmann-Suwa residues of F as multiples of complex numbers by integration currents along irreducible complex subvarieties of X. We then prove a formula that determines the Baum-Bott residue of simple almost Liouvillian foliations of codimension one, in terms of Lehmann- Suwa residues, generalizing a result of Marco Brunella. As an application, we give sufficient conditions for the existence of dicritical singularities of a singular real-analytic Levi-flat hypersurface M ⊂ X tangent to F. © 2020 International Press
dc.description.sponsorship Fondo Nacional de Desarrollo Científico y Tecnológico - Fondecyt
dc.identifier.scopus 2-s2.0-85101770142
dc.language.iso eng
dc.publisher Homology, Homotopy and Applications
dc.relation.ispartof Asian Journal of Mathematics
dc.rights info:eu-repo/semantics/openAccess
dc.subject Residues formula
dc.subject holomorphic foliations es_PE
dc.subject Levi-flat hypersurfaces es_PE
dc.title Lehmann-Suwa Residues Of Codimension One Holomorphic Foliations And Applications
dc.type info:eu-repo/semantics/article