Publicación:
Bivariant K-theory of generalized Weyl algebras
Bivariant K-theory of generalized Weyl algebras
dc.contributor.author | Gutiérrez J. | es_PE |
dc.contributor.author | Valqui C. | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We compute the isomorphism class in KKalg of all noncommutative generalized Weyl algebras A D C[h].σ; P /, where σ.h/ D qh C h0 is an automorphism of C[h], except when q ¤ 1 is a root of unity. In particular, we compute the isomorphism class in KKalg of the quantum Weyl algebra, the primitive factors Bλ of U.sl2/ and the quantum weighted projective lines O.W Pq.k; l//. © European Mathematical Society | |
dc.description.sponsorship | Fondo Nacional de Desarrollo Científico y Tecnológico - Fondecyt | |
dc.identifier.doi | https://doi.org/10.4171/JNCG/375 | |
dc.identifier.scopus | 2-s2.0-85091630103 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/2642 | |
dc.language.iso | eng | |
dc.publisher | European Mathematical Society Publishing House | |
dc.relation.ispartof | Journal of Noncommutative Geometry | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Smooth generalized crossed products | |
dc.subject | Generalized Weyl algebras | es_PE |
dc.subject | K-theory | es_PE |
dc.subject | Kk-theory | es_PE |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#1.01.01 | |
dc.title | Bivariant K-theory of generalized Weyl algebras | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# | |
oairecerif.author.affiliation | #PLACEHOLDER_PARENT_METADATA_VALUE# |