Publicación:
iStar (i*): An interactive star coordinates approach for high-dimensional data exploration

dc.contributor.author Garcia Zanabria G. es_PE
dc.contributor.author Nonato L.G. es_PE
dc.contributor.author Gomez-Nieto E. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2016
dc.description We would like to thank the financial support from the National Council for Science, Technology and Technological Innovation - CONCYTEC, Peru (grant FONDECYT 011-2013 Master Program), the São Paulo Research Foundation - FAPESP (grants #2013/00191-0 and #2011/22749-8) and the National Counsel of Technological and Scientific Development - CNPq, Brazil (grant #302643/2013-3).
dc.description.abstract Star Coordinates is an important visualization method able to reveal patterns and groups from multidimensional data while still showing the impact of data attributes in the formation of such patterns and groups. Despite its usefulness, Star Coordinates bears limitations that impair its use in several scenarios. For instance, when the number of data dimensions is high, the resulting visualization becomes cluttered, hampering the joint analysis of attribute importance and group/pattern formation. In this paper, we propose a novel method that renders Star Coordinates a feasible alternative to analyze high-dimensional data. The proposed method relies on a clustering mechanism to group attributes in order to mitigate visual clutter. Clustering can be performed automatically as well as interactively, allowing the analysis of how particular groups of attributes impact on the radial layout, thus assisting users in the understanding of data. The effectiveness of our approach is shown through a set of experiments and case studies, which attest its usefulness in practical applications.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1016/j.cag.2016.08.007
dc.identifier.scopus 2-s2.0-84992412635
dc.identifier.uri https://hdl.handle.net/20.500.12390/669
dc.language.iso eng
dc.publisher Elsevier Ltd
dc.relation.ispartof Computers and Graphics (Pergamon)
dc.rights info:eu-repo/semantics/openAccess
dc.subject Visualization method
dc.subject Clustering algorithms es_PE
dc.subject Flow visualization es_PE
dc.subject Visualization es_PE
dc.subject Attribute importance es_PE
dc.subject Clustering mechanism es_PE
dc.subject Experiments and case studies es_PE
dc.subject Feasible alternatives es_PE
dc.subject High dimensional data es_PE
dc.subject Multidimensional data es_PE
dc.subject Star coordinates es_PE
dc.subject Data visualization es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#2.02.04
dc.title iStar (i*): An interactive star coordinates approach for high-dimensional data exploration
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
Archivos