Bienvenido al Repositorio Institucional del Concytec

El Repositorio Institucional del Concytec tiene como objetivo permitir el libre acceso a la producción científica institucional, optimizando su visibilidad; así mismo garantizar la preservación y conservación de la información relacionada a la ciencia, tecnología e innovación.



Display.item.jsp


Por favor, utiliza este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12390/2885


Campo DCValorIdioma
dc.contributor.authorPuchuri, Lilianaes_PE
dc.contributor.authorBueno, Oresteses_PE
dc.date.accessioned2021-09-05T04:49:49Z-
dc.date.available2021-09-05T04:49:49Z-
dc.date.issued2016-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/20.500.12390/2885-
dc.description.abstractRelated to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto. (C) 2016 Elsevier Inc. All rights reserved.es
dc.formatapplication/pdfes
dc.language.isoenges
dc.publisherElsevier BVes_PE
dc.relation.ispartofJOURNAL OF DIFFERENTIAL EQUATIONSes
dc.rightsinfo:eu-repo/semantics/closedAccesses
dc.subjectAnalysises_PE
dc.subjectApplied Mathematicses_PE
dc.titleOn the classification of elliptic foliations induced by real quadratic fields with centeres
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.jde.2016.09.019-
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.01.01-
dc.relation.isFundedByCONV-007-2013-FONDECYT-DE.es
dc.type.versioninfo:eu-repo/semantics/publishedVersiones
item.fulltextNo texto completo-
item.languageiso639-1en-
item.grantfulltextnone-
Colección:6.1 Proyectos de investigación científica
Registro simplificado



Páginas vistas

11
marcado en 03-dic-2021

Google ScholarTM

Check

Altmetric

  • Compartir este item
  • QR Code

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.