Bienvenido al Repositorio Institucional del Concytec

El Repositorio Institucional del Concytec tiene como objetivo permitir el libre acceso a la producción científica institucional, optimizando su visibilidad; así mismo garantizar la preservación y conservación de la información relacionada a la ciencia, tecnología e innovación.

Display.item.jsp


Por favor, utiliza este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12390/2742


Título: Mapping Ausangate glacier changes using clustering techniques on cloud computing infrastructure
Autor(es): Ayma V. 
Beltrán C. 
Happ P. 
Costa G. 
Feitosa R. 
Resumen: Earth's behavior comprehension can be achieved by the analysis of Remote Sensing data, but considering the unprecedented volumes of information currently provided by different satellites sensors, the problem can be regarded as a big data problem. Machine learning techniques have the potential to improve the analysis of this type of data; however, most current machine learning algorithms are unable to properly process such huge volumes of data. In the attempt to overcome the computational limitations related to Remote Sensing Big Data analysis, we implemented the K-Means algorithms, a clustering technique, as distributed solution, exploiting the capabilities of cloud computing infrastructure for processing very large datasets. The solution was developed over the InterCloud Data Mining Package, which is a suite of distributed classification methods, previously employed in hyperspectral image analysis. In this work we extended the functionalities of that package, by making it able to process multispectral images using the aforementioned clustering algorithm. To validate our proposal, we analyzed the Ausangate glacier, located on the Andes Mountains, in Peru, by mapping the changes in such environment through a multi-temporal Remote Sensing analysis. Our results and conclusions are focused on the thematic accuracy and the computational performance of the proposed solution. Thematic accuracy was assessed by comparing the automatically detected glacier areas with manually selected ground truth data. Moreover, we compared the computational load involved in executing the respective processes sequentially and in a distributed fashion, using a physical local machine and cloud computing infrastructure. © 2019 SPIE. Downloading of the abstract is permitted for personal use only.
Tema: Big data;Cloud computing;Clustering technique;Glacier changes;Remote Sensing
Editorial: SPIE
Fecha de publicación: 2019
Publicado en: Proceedings of SPIE - The International Society for Optical Engineering 
Financiamiento: CONV-000148-2015-FONDECYT-DE 
Tipo de publicación: info:eu-repo/semantics/article
Identificador Handle: http://hdl.handle.net/20.500.12390/2742
DOI: https://doi.org/10.1117/12.2533700
Nivel de acceso: info:eu-repo/semantics/closedAccess
Colección:6.1 Proyectos de investigación científica

Registro Dublin Core completo



Páginas vistas

49
marcado en 19-ene-2023

Google ScholarTM

Check

Altmetric

  • Compartir este item
  • QR Code

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.