Bienvenido al Repositorio Institucional del Concytec

El Repositorio Institucional del Concytec tiene como objetivo permitir el libre acceso a la producción científica institucional, optimizando su visibilidad; así mismo garantizar la preservación y conservación de la información relacionada a la ciencia, tecnología e innovación.



Display.item.jsp


Por favor, utiliza este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12390/2669


Título: Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon
Autor(es): Solano-Villarreal E. 
Valdivia W. 
Pearcy M. 
Linard C. 
Pasapera-Gonzales J. 
Moreno-Gutierrez D. 
Lejeune P. 
Llanos-Cuentas A. 
Speybroeck N. 
Hayette M.-P. 
Rosas-Aguirre A. 
Resumen: This is the first study to assess the risk of co-endemic Plasmodium vivax and Plasmodium falciparum transmission in the Peruvian Amazon using boosted regression tree (BRT) models based on social and environmental predictors derived from satellite imagery and data. Yearly cross-validated BRT models were created to discriminate high-risk (annual parasite index API > 10 cases/1000 people) and very-high-risk for malaria (API > 50 cases/1000 people) in 2766 georeferenced villages of Loreto department, between 2010–2017 as other parts in the article (graphs, tables, and texts). Predictors were cumulative annual rainfall, forest coverage, annual forest loss, annual mean land surface temperature, normalized difference vegetation index (NDVI), normalized difference water index (NDWI), shortest distance to rivers, time to populated villages, and population density. BRT models built with predictor data of a given year efficiently discriminated the malaria risk for that year in villages (area under the ROC curve (AUC) > 0.80), and most models also effectively predicted malaria risk in the following year. Cumulative rainfall, population density and time to populated villages were consistently the top three predictors for both P. vivax and P. falciparum incidence. Maps created using the BRT models characterize the spatial distribution of the malaria incidence in Loreto and should contribute to malaria-related decision making in the area. © 2019, The Author(s).
Tema: biological model;environment;geography;human;incidencemalaria falciparum;Peru;physiology;Plasmodium falciparum;regression analysis;risk assessment;risk factor;satellite imagery
Editorial: Nature Publishing Group
Fecha de publicación: 2019
Publicado en: Scientific Reports 
Financiamiento: CONV-00000008-2014-FONDECYT 
Tipo de publicación: info:eu-repo/semantics/article
Identificador Handle: http://hdl.handle.net/20.500.12390/2669
DOI: 10.1038/s41598-019-51564-4
Nivel de acceso: info:eu-repo/semantics/openAccess
Colección:6.1 Proyectos de investigación científica

Registro Dublin Core completo



Páginas vistas

1
marcado en 19-ene-2022

Google ScholarTM

Check

Altmetric

  • Compartir este item
  • QR Code

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.