Bienvenido al Repositorio Institucional del Concytec

El Repositorio Institucional del Concytec tiene como objetivo permitir el libre acceso a la producción científica institucional, optimizando su visibilidad; así mismo garantizar la preservación y conservación de la información relacionada a la ciencia, tecnología e innovación.



Display.item.jsp


Por favor, utiliza este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12390/2512


Título: A generative adversarial network approach for super-resolution of sentinel-2 satellite images
Autor(es): Pineda F. 
Ayma V. 
Beltran C. 
Resumen: High-resolution satellite images have always been in high demand due to the greater detail and precision they offer, as well as the wide scope of the fields in which they could be applied; however, satellites in operation offering very high-resolution (VHR) images has experienced an important increase, but they remain as a smaller proportion against existing lower resolution (HR) satellites. Recent models of convolutional neural networks (CNN) are very suitable for applications with image processing, like resolution enhancement of images; but in order to obtain an acceptable result, it is important, not only to define the kind of CNN architecture but the reference set of images to train the model. Our work proposes an alternative to improve the spatial resolution of HR images obtained by Sentinel-2 satellite by using the VHR images from PeruSat1, a peruvian satellite, which serve as the reference for the super-resolution approach implementation based on a Generative Adversarial Network (GAN) model, as an alternative for obtaining VHR images. The VHR PeruSat-1 image dataset is used for the training process of the network. The results obtained were analyzed considering the Peak Signal to Noise Ratios (PSNR) and the Structural Similarity (SSIM). Finally, some visual outcomes, over a given testing dataset, are presented so the performance of the model could be analyzed as well. © 2020 International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives.
Tema: GAN;PeruSat-1;Sentinel-2;Super-Resolution
Editorial: International Society for Photogrammetry and Remote Sensing
Fecha de publicación: 2020
Publicado en: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives 
Financiamiento: 131-2018 
Tipo de publicación: info:eu-repo/semantics/article
Identificador Handle: http://hdl.handle.net/20.500.12390/2512
DOI: 10.5194/isprs-archives-XLIII-B1-2020-9-2020
Nivel de acceso: info:eu-repo/semantics/openAccess
Colección:6.1 Proyectos de investigación científica

Registro Dublin Core completo



Páginas vistas

2
marcado en 19-oct-2021

Google ScholarTM

Check

Altmetric

  • Compartir este item
  • QR Code

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.