Publicación:
Computational and experimental analysis of a Glaucoma flat drainage device
Computational and experimental analysis of a Glaucoma flat drainage device
dc.contributor.author | Panduro, R. M. R. | es_PE |
dc.contributor.author | Monterrey, Christian | es_PE |
dc.contributor.author | Mantari, J. L. | es_PE |
dc.contributor.author | Canahuire, Ruth | es_PE |
dc.contributor.author | Alvarez, Helard | es_PE |
dc.contributor.author | Miranda, Mario | es_PE |
dc.contributor.author | Elsheikh, Ahmed | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2021 | |
dc.description | The authors would like to thank to FONDECYT-UK J008-2016 for the financial support during the course of this work. | |
dc.description.abstract | This paper presents a computational and experimental analysis of a glaucoma flat drainage device (FDD). The FDD consists of a metallic microplate placed into the eye sclerocorneal limbus, which creates a virtual path between the anterior chamber and its exterior, allowing the intraocular pressure (LOP) to be kept in a normal range. It also uses the surrounding tissue as a flow regulator in order to provide close values of LOP for a wide range of aqueous humor (AH) flow rates. The Neo Hookean hyperelastic model is used for the solid part, while the Reynolds thin film fluid model is used for the fluid part. On the other hand, a gravitational-driven flow test is implemented in order to validate the simulation process. An in vitro experiment evaluated the flow characteristics of the device implanted in fourteen extirpated pig eyes, giving as a result the best-fit for the Young modulus of the tissue surrounding the device. Finally, according to the resulting computational model, for a range of 1.4-3.1 mu L/min, the device presents a pressure variation range of 6-7.5 mmHg. (C) 2021 Published by Elsevier Ltd. | |
dc.description.sponsorship | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec | |
dc.identifier.doi | https://doi.org/10.1016/j.jbiomech.2021.110234 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/2925 | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.relation.ispartof | JOURNAL OF BIOMECHANICS | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Thin-film fluid | |
dc.subject | Glaucoma | es_PE |
dc.subject | Fluid-structure interaction | es_PE |
dc.subject | Glaucoma drainage device (GDD) | es_PE |
dc.subject | Finite element method | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.04 | |
dc.title | Computational and experimental analysis of a Glaucoma flat drainage device | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication |