Publicación:
Finite-Expansivity and N-Shadowing

dc.contributor.author Carrasco-Olivera D. es_PE
dc.contributor.author Lee K. es_PE
dc.contributor.author Morales C.A. es_PE
dc.contributor.author Villavicencio H. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2021
dc.description.abstract We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1007/s00574-021-00253-w
dc.identifier.scopus 2-s2.0-85103348351
dc.identifier.uri https://hdl.handle.net/20.500.12390/2427
dc.language.iso eng
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.relation.ispartof Bulletin of the Brazilian Mathematical Society
dc.rights info:eu-repo/semantics/openAccess
dc.subject N-shadowing
dc.subject Homeomorphism es_PE
dc.subject.ocde http://purl.org/pe-repo/ocde/ford#1.01.01
dc.title Finite-Expansivity and N-Shadowing
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos