Publicación:
Finite-Expansivity and N-Shadowing
Finite-Expansivity and N-Shadowing
dc.contributor.author | Carrasco-Olivera D. | es_PE |
dc.contributor.author | Lee K. | es_PE |
dc.contributor.author | Morales C.A. | es_PE |
dc.contributor.author | Villavicencio H. | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2021 | |
dc.description.abstract | We prove that every finite-expansive homeomorphism with the shadowing property has a kind of stability. This stability will be good enough to imply both the shadowing property and the denseness of periodic points in the chain recurrent set. Next we analyze the N-shadowing property which is really stronger than the multishadowing property in Cherkashin and Kryzhevich (Topol Methods Nonlinear Anal 50(1): 125–150, 2017). We show that an equicontinuous homeomorphism has the N-shadowing property for some positive integer N if and only if it has the shadowing property. © 2021, Sociedade Brasileira de Matemática. | |
dc.description.sponsorship | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec | |
dc.identifier.doi | https://doi.org/10.1007/s00574-021-00253-w | |
dc.identifier.scopus | 2-s2.0-85103348351 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/2427 | |
dc.language.iso | eng | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.relation.ispartof | Bulletin of the Brazilian Mathematical Society | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | N-shadowing | |
dc.subject | Homeomorphism | es_PE |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#1.01.01 | |
dc.title | Finite-Expansivity and N-Shadowing | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication |