Publicación:
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas
Comparative Study of Spatial Prediction Models for Estimating PM2.5 Concentration Level in Urban Areas
No hay miniatura disponible
Fecha
2021
Autores
Vargas-Campos I.R.
Villanueva E.
Título de la revista
Revista ISSN
Título del volumen
Editor
Springer Science and Business Media Deutschland GmbH
Proyectos de investigación
Unidades organizativas
Número de la revista
Abstracto
Having accurate spatial prediction models of air pollutant concentrations can be very helpful to alleviate the shortage of monitoring stations, specially in low-to-middle income countries. However, given the large diversity of model types, both statistical, numerical and machine learning (ML) based, it is not clear which of them are most suitable for this task. In this paper we study the predictive capabilities of common machine learning methods for the spatial prediction of PM2.5 concentration level. Three relevant factors were scrutinized: the extent to which meteorological variables impact the prediction performance; the effect of variable normalization by inverse distance weighting (IDW); and the number of neighborhood stations needed to maximize predictive performance. Results in a dataset from Beijing monitoring network show that simple models like Linear Regresors trained on IDW normalized variables can cope with this task. Some knowledge have been derived to guide the construction of competent models for spatial prediction of PM2.5 concentrations with ML-based methods. © 2021, Springer Nature Switzerland AG.
Descripción
Acknowledgment. The authors gratefully acknowledge financial support by Fondo Nacional de Desarrollo Científico, Tecnológico y de Innovación Tecnológica (Fondecyt) -Mundial Bank (Grant: 50-2018-FONDECYT-BM-IADT-MU).
Palabras clave
Spatial prediction,
Air quality,
Machine learning,
PM2.5