Publicación:
FP-AK-QIEA-R for Multi-Objective Optimization

dc.contributor.author Saire, JEC es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2016
dc.description.abstract The Evolutionary Algorithms have main features like: population, evolutionary operations (crossover, mate, mutation and others). Most of them are based on randomness and follow a criteria using fitness like selector. The FP-AK-QIEA-R uses probability density function according to best of initial population to sample new population and uses rewarding criteria to sample around the best of every iteration using cumulative density function estimated for Akima interpolation, it was used for mono-objective problems showing good results. The proposal uses the algorithm FP-AK-QIEA-R and add Pareto dominance to experiment with multi-objective problems. The performed experiments use some benchmark functions from the literature and initial results shows a promissory way for the algorithm.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1145/3022702.3022714
dc.identifier.isi 433384100014
dc.identifier.uri https://hdl.handle.net/20.500.12390/1075
dc.language.iso eng
dc.publisher Association for Computing Machinery
dc.rights info:eu-repo/semantics/openAccess
dc.subject Herencia
dc.subject Genética es_PE
dc.subject Algoritmo es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.06.07
dc.title FP-AK-QIEA-R for Multi-Objective Optimization
dc.type info:eu-repo/semantics/conferenceObject
dspace.entity.type Publication
Archivos