Publicación:
An experimental study of fog and cloud computing in CEP-based Real-Time IoT applications

No hay miniatura disponible
Fecha
2021
Autores
Mondragón-Ruiz G.
Tenorio-Trigoso A.
Castillo-Cara M.
Caminero B.
Carrión C.
Título de la revista
Revista ISSN
Título del volumen
Editor
Springer Science and Business Media Deutschland GmbH
Proyectos de investigación
Unidades organizativas
Número de la revista
Abstracto
Internet of Things (IoT) has posed new requirements to the underlying processing architecture, specially for real-time applications, such as event-detection services. Complex Event Processing (CEP) engines provide a powerful tool to implement these services. Fog computing has raised as a solution to support IoT real-time applications, in contrast to the Cloud-based approach. This work is aimed at analysing a CEP-based Fog architecture for real-time IoT applications that uses a publish-subscribe protocol. A testbed has been developed with low-cost and local resources to verify the suitability of CEP-engines to low-cost computing resources. To assess performance we have analysed the effectiveness and cost of the proposal in terms of latency and resource usage, respectively. Results show that the fog computing architecture reduces event-detection latencies up to 35%, while the available computing resources are being used more efficiently, when compared to a Cloud deployment. Performance evaluation also identifies the communication between the CEP-engine and the final users as the most time consuming component of latency. Moreover, the latency analysis concludes that the time required by CEP-engine is related to the compute resources, but is nonlinear dependent of the number of things connected. © 2021, The Author(s).
Descripción
This work has been partially funded by the Spanish Ministry of Science, Innovation and Universities (ref. RTI2018-098156-B-C52), by the Research Plan of the University of Castilla-La Mancha (ref. 2019-GRIN-27060), and by FONDECYT / World Bank (ref. 026-2019 FONDECYT-BM-INC.INV).
Palabras clave
Real-Time IoT Applications, Benchmark Analysis, Cloud Computing, Complex Event Processing, Edge Computing, Fog Computing
Citación