Publicación:
A FAIR evaluation of public datasets for stress detection systems

dc.contributor.author Cuno A. es_PE
dc.contributor.author Condori-Fernandez N. es_PE
dc.contributor.author Mendoza A. es_PE
dc.contributor.author Lovon W.R. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2020
dc.description.abstract Nowadays, datasets are an essential asset used to train, validate, and test stress detection systems based on machine learning. In this paper, we used two sets of FAIR metrics for evaluating five public datasets for stress detection. Results indicate that all these datasets comply to some extent with the (F)indable, (A)ccessible, and (R)eusable principles, but none with the (I)nteroperable principle these findings contribute to raising awareness on (i) the need for the FAIRness development and improvement of stress datasets, and (ii) the importance of promoting open science in the affective computing community. © 2020 IEEE.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1109/SCCC51225.2020.9281274
dc.identifier.scopus 2-s2.0-85098624680
dc.identifier.uri https://hdl.handle.net/20.500.12390/2462
dc.language.iso eng
dc.publisher IEEE Computer Society
dc.relation.ispartof Proceedings - International Conference of the Chilean Computer Science Society, SCCC
dc.rights info:eu-repo/semantics/openAccess
dc.subject Stress detection
dc.subject Datasets es_PE
dc.subject FAIR principles es_PE
dc.subject.ocde http://purl.org/pe-repo/ocde/ford#3.02.25
dc.title A FAIR evaluation of public datasets for stress detection systems
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos