Publicación:
One-step synthesis of polyethyleneimine-coated magnetite nanoparticles and their structural, magnetic and power absorption study

No hay miniatura disponible
Fecha
2020
Autores
Leon Felix, Lizbet
Rodriguez Martinez, Marco Antonio
Pacheco Salazar, David Gregorio
Huamani Coaquira, Jose Antonio
Título de la revista
Revista ISSN
Título del volumen
Editor
Royal Society of Chemistry
Proyectos de investigación
Unidades organizativas
Número de la revista
Abstracto
Magnetic nanoparticles (NPs) are especially interesting for several biomedical applications due to their chemical surface, especially for targeted cancer imaging and therapeutics. In order to realize these applications, it is important to know their magnetic properties among other complementary properties that help to improve the understanding of the synthesis process. In this work, we report the magnetic properties of polyethyleneimine-coated magnetite (PEI-Fe3O4) NPs synthesized by a one-step method via the co-precipitation method and using PEI as a stabilizer. Transmission electron microscopy (TEM) images revealed agglomerated magnetic nanoparticles with an average size of similar to 10 nm; meanwhile, the X-ray diffraction (DRX) analysis confirmed a pure magnetite phase. The study of magnetic properties shows a superparamagnetic system with coexistence of non-interacting single NPs with a low blocking temperature (similar to 35 K) and interacting NPs in the aggregates with a higher blocking temperature (>150 K), in which the interparticle interactions of magnetic cores dominate over surface spin disorder. The interaction between the surface spin-disorder layer and NP core was found to be weak, related to a weak exchange bias effect. A maximum specific loss power (SLP) value of 70 W g(-1) was obtained (f = 571 kHz and H = 23.87 kA m(-1)) indicating that the magnetic response plays a crucial role in determining the heating efficiency for future applications.
Descripción
Palabras clave
General Chemistry, General Chemical Engineering
Citación