Publicación:
Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials

dc.contributor.author Ledesma C.T. es_PE
dc.contributor.author Gutiérrez H.C. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2021
dc.description.abstract In this article, we deal with the nonlinear Schrödinger equation with nonlocal regional diffusion 0.1 (Formula presented.) where 0 < ? < 1, n ? 2, and (Formula presented.) is a continuous function. The operator (Formula presented.) is a variational version of the nonlocal regional Laplacian defined as (Formula presented.) where (Formula presented.) be a positive function. Considering that ?, V, and f(·, t) are periodic or asymptotically periodic at infinity, we prove the existence of ground state solution of (1) by using Nehari manifold and comparison method. Furthermore, in the periodic case, by combining deformation-type arguments and Lusternik–Schnirelmann theory, we prove that problem (1) admits infinitely many geometrically distinct solutions. © 2020 John Wiley & Sons, Ltd.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1002/mma.7005
dc.identifier.scopus 2-s2.0-85096688854
dc.identifier.uri https://hdl.handle.net/20.500.12390/2362
dc.language.iso eng
dc.publisher John Wiley and Sons Ltd
dc.relation.ispartof Mathematical Methods in the Applied Sciences
dc.rights info:eu-repo/semantics/openAccess
dc.subject variational methods
dc.subject nonlinear elliptic equations es_PE
dc.subject nonlocal problems es_PE
dc.subject nonlocal regional Laplacian es_PE
dc.subject.ocde http://purl.org/pe-repo/ocde/ford#1.01.02
dc.title Ground state solutions for a class of nonlocal regional Schrödinger equation with nonperiodic potentials
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos