Publicación:
A distance between bounded linear operators

dc.contributor.author Jung, W. es_PE
dc.contributor.author Metzger, R. es_PE
dc.contributor.author Morales, C. A. es_PE
dc.contributor.author Villavicencio, H. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2020
dc.description.abstract We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1016/j.topol.2020.107359
dc.identifier.uri https://hdl.handle.net/20.500.12390/2822
dc.language.iso eng
dc.publisher Elsevier BV
dc.relation.ispartof TOPOLOGY AND ITS APPLICATIONS
dc.rights info:eu-repo/semantics/openAccess
dc.subject Geometry and Topology
dc.subject.ocde http://purl.org/pe-repo/ocde/ford#1.01.02
dc.title A distance between bounded linear operators
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos