Publicación:
A distance between bounded linear operators
A distance between bounded linear operators
dc.contributor.author | Jung, W. | es_PE |
dc.contributor.author | Metzger, R. | es_PE |
dc.contributor.author | Morales, C. A. | es_PE |
dc.contributor.author | Villavicencio, H. | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2020 | |
dc.description.abstract | We extend the classical Banach-Mazur distance [3] from Banach spaces to linear operators between these spaces. We prove in the finite dimensional case that the corresponding topology is metrizable, complete, separable and locally compact. Furthermore, we prove that the Banach-Mazur compactum embeds isometrically into the resulting topological space. (C) 2020 Elsevier B.V. All rights reserved. | |
dc.description.sponsorship | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec | |
dc.identifier.doi | https://doi.org/10.1016/j.topol.2020.107359 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/2822 | |
dc.language.iso | eng | |
dc.publisher | Elsevier BV | |
dc.relation.ispartof | TOPOLOGY AND ITS APPLICATIONS | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Geometry and Topology | |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#1.01.02 | |
dc.title | A distance between bounded linear operators | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication |