Publicación:
Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado]

dc.contributor.author Lovón-Melgarejo J. es_PE
dc.contributor.author Tenorio-Trigoso A. es_PE
dc.contributor.author Castillo-Cara M. es_PE
dc.contributor.author Miranda D. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2018
dc.description Este trabajo ha sido parcialmente financiado por ”Cienciactiva – CONCYTEC” del gobierno peruano, bajo el número de proyecto 128-2015-FONDECYT y por el ”Programa Nacional de Innovación para la Competiti-vidad y Productividad, Innóvate - Perúc¸on número de contrato FINCyT 363-PNICP-PIAP-2014.
dc.description.abstract The following work applies Machine Learning algorithms as a tool for a possible solution to the problem of citizen security in a South American city. This application aims to reduce the threat risk to the physical integrity of pedestrians through the geolocation, in real time, using safer places to walk. A database of free disposal for the user is the Open Data San Isidro, district of Lima, Peru, which has been used in the development of this work. This database keeps records of different accidents types (most of the automobile type) occurring in different places of this district, this data will be used to determine safe areas in the route from one place to another, decreasing the probability of suffering an accident. For this work, techniques of non-supervised learning algorithms of Clustering type: k-Means have been used. Likewise, a reduction of dimensions has previously been made using the Principal Component Analysis (PCA) technique.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.18687/LACCEI2018.1.1.413
dc.identifier.scopus 2-s2.0-85057447347
dc.identifier.uri https://hdl.handle.net/20.500.12390/933
dc.language.iso spa
dc.publisher Latin American and Caribbean Consortium of Engineering Institutions
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject Smart City
dc.subject Machine learning es_PE
dc.subject Open Data es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#5.07.04
dc.title Identification of risk zones for road safety through unsupervised learning algorithms [Identificación de zonas de riesgo para la Seguridad Vial mediante algoritmos de aprendizaje no supervisado]
dc.type info:eu-repo/semantics/conferenceObject
dspace.entity.type Publication
Archivos