Publicación:
Design, calibration, and performance of the MINERvA detector

dc.contributor.author Aliaga L. es_PE
dc.contributor.author Bagby L. es_PE
dc.contributor.author Baldin B. es_PE
dc.contributor.author Baumbaugh A. es_PE
dc.contributor.author Bodek A. es_PE
dc.contributor.author Bradford R. es_PE
dc.contributor.author Brooks W.K. es_PE
dc.contributor.author Boehnlein D. es_PE
dc.contributor.author Boyd S. es_PE
dc.contributor.author Budd H. es_PE
dc.contributor.author Butkevich A. es_PE
dc.contributor.author Martinez Caicedo D.A. es_PE
dc.contributor.author Castromonte C.M. es_PE
dc.contributor.author Christy M.E. es_PE
dc.contributor.author Chvojka J. es_PE
dc.contributor.author Da Motta H. es_PE
dc.contributor.author Damiani D.S. es_PE
dc.contributor.author Danko I. es_PE
dc.contributor.author Datta M. es_PE
dc.contributor.author Devan J. es_PE
dc.contributor.author Draeger E. es_PE
dc.contributor.author Dytman S.A. es_PE
dc.contributor.author Díaz G.A. es_PE
dc.contributor.author Eberly B. es_PE
dc.contributor.author Edmondson D.A. es_PE
dc.contributor.author Felix J. es_PE
dc.contributor.author Fields L. es_PE
dc.contributor.author Fiorentini G.A. es_PE
dc.contributor.author Flight R.S. es_PE
dc.contributor.author Gago A.M. es_PE
dc.contributor.author Gallagher H. es_PE
dc.contributor.author George C.A. es_PE
dc.contributor.author Gielata J.A. es_PE
dc.contributor.author Gingu C. es_PE
dc.contributor.author Gran R. es_PE
dc.contributor.author Grange J. es_PE
dc.contributor.author Grossman N. es_PE
dc.contributor.author Harris D.A. es_PE
dc.contributor.author Heaton J. es_PE
dc.contributor.author Higuera A. es_PE
dc.contributor.author Hobbs J.A. es_PE
dc.contributor.author Howley I.J. es_PE
dc.contributor.author Hurtado K. es_PE
dc.contributor.author Jerkins M. es_PE
dc.contributor.author Kafka T. es_PE
dc.contributor.author Kantner M.O. es_PE
dc.contributor.author Keppel C. es_PE
dc.contributor.author Kilmer J. es_PE
dc.contributor.author Kordosky M. es_PE
dc.contributor.author Krajeski A.H. es_PE
dc.contributor.author Kumbartzki G.J. es_PE
dc.contributor.author Lee H. es_PE
dc.contributor.author Leister A.G. es_PE
dc.contributor.author Locke G. es_PE
dc.contributor.author Maggi G. es_PE
dc.contributor.author Maher E. es_PE
dc.contributor.author Manly S. es_PE
dc.contributor.author Mann W.A. es_PE
dc.contributor.author Marshall C.M. es_PE
dc.contributor.author McFarland K.S. es_PE
dc.contributor.author McGivern C.L. es_PE
dc.contributor.author McGowan A.M. es_PE
dc.contributor.author Mislivec A. es_PE
dc.contributor.author Morfín J.G. es_PE
dc.contributor.author Mousseau J. es_PE
dc.contributor.author Naples D. es_PE
dc.contributor.author Nelson J.K. es_PE
dc.contributor.author Niculescu G. es_PE
dc.contributor.author Niculescu I. es_PE
dc.contributor.author O'Connor C.D. es_PE
dc.contributor.author Ochoa N. es_PE
dc.contributor.author Olsen J. es_PE
dc.contributor.author Osmanov B. es_PE
dc.contributor.author Osta J. es_PE
dc.contributor.author Palomino J.L. es_PE
dc.contributor.author Paolone V. es_PE
dc.contributor.author Park J. es_PE
dc.contributor.author Perdue G.N. es_PE
dc.contributor.author Peña C. es_PE
dc.contributor.author Pla-Dalmau A. es_PE
dc.contributor.author Rakotondravohitra L. es_PE
dc.contributor.author Ransome R.D. es_PE
dc.contributor.author Ray H. es_PE
dc.contributor.author Ren L. es_PE
dc.contributor.author Rubinov P. es_PE
dc.contributor.author Rude C. es_PE
dc.contributor.author Sassin K.E. es_PE
dc.contributor.author Schellman H. es_PE
dc.contributor.author Schmitz D.W. es_PE
dc.contributor.author Schneider R.M. es_PE
dc.contributor.author Schulte E.C. es_PE
dc.contributor.author Simon C. es_PE
dc.contributor.author Snider F.D. es_PE
dc.contributor.author Snyder M.C. es_PE
dc.contributor.author Solano Salinas C.J. es_PE
dc.contributor.author Tagg N. es_PE
dc.contributor.author Tice B.G. es_PE
dc.contributor.author Tilden R.N. es_PE
dc.contributor.author Velásquez J.P. es_PE
dc.contributor.author Walton T. es_PE
dc.contributor.author Westerberg A. es_PE
dc.contributor.author Wolcott J. es_PE
dc.contributor.author Wolthuis B.A. es_PE
dc.contributor.author Woodward N. es_PE
dc.contributor.author Wytock T. es_PE
dc.contributor.author Zavala G. es_PE
dc.contributor.author Zeng H.B. es_PE
dc.contributor.author Zhang D. es_PE
dc.contributor.author Zhu L.Y. es_PE
dc.contributor.author Ziemer B.P. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2014
dc.description.abstract The skin is the largest organ of the body that protects it from the external environment. High- frequency ultra sound (HF-US) has been used to visualize the skin in depth and to diagnose some pathologies in dermatological applications. Quantitative ultrasound (QUS) includes several techniques that provide values of particular physical properties. In this thesis work, three QUS parameters are explained and used to characterize healthy skin through HF-US: attenuation coefficient slope (ACS), backscatter coefficient (BSC) and shear wave speed (SWS). They were estimated with the regularized spectral-log difference (RSLD) method, the reference phan- tom method, and the crawling wave sonoelastography method, respectively. All the three parameters were assessed in phantoms, ex vivo and in vivo skin. In calibrated phantoms, RSLD showed a reduc- tion of up to 93% of the standard deviation concerning the estimation with SLD, and BSC showed an agreement with the Faran’s theoretical curve. In gelatin-based phantoms, surface acoustic waves (SAWs) were estimated in two interfaces: solid-water and solid-US gel, which all owed corroborating SAWs presence and finding an empirical compensation factor when the coupling interface is US gel. A correction factor of 0:97 for SAW-to-shear was found to avoid underestimation in phantoms. Porcine thigh was calculated in the range from 8 to 27 MHz, where the ACS was 4:08 _+_0:43 dB cm -1 MHz-1 and BSC was in the range from 10 1 to 10° sr-1 _cm-1. Crawling wave sonoelastography method was applied for the vibration frequencies between 200 Hz and 800 Hz, where SWS was in the range from 4:6 m/sto9:1 m/s. In vivo ACS and BSC were assessed in the healthy forearm and thigh, whereas SWS only in the thigh. The average ACS in the forearm dermis was 2.07dB cm-1 _MHz-1, which is in close agreement with the literature. A significant difference (p < 0.05) was found between the ACS in the forearm dermis and the thigh dermis (average ACS of 2.54dB cm-1 _MHz-1). The BSC of the forearm and thigh dermis were in the range from 10 -1 to 10° sr-1 _cm-1, and in the range from 10-1 to 10° sr-1 _cm-1, respectively. The SWS in the thigh dermis was 2:4 _+_0:38 m/s for a vibration frequency of 200Hz, with an increasing trend as frequency increases. Results suggest that these QUS parameters have the potential to be used as a tool for in vivo skin characterization and show potential for future application in skin lesions. en
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1016/j.nima.2013.12.053
dc.identifier.scopus 2-s2.0-84894497960
dc.identifier.uri https://hdl.handle.net/20.500.12390/857
dc.language.iso eng
dc.publisher Pontificia Universidad Católica del Perú es_PE
dc.relation.ispartof Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
dc.rights info:eu-repo/semantics/openAccess
dc.rights.uri https://creativecommons.org/licenses/by/4.0/
dc.subject Procesamiento de imágenes digitales es_PE
dc.subject Ultrasonido en medicina es_PE
dc.subject Diagnóstico por imágenes es_PE
dc.title Design, calibration, and performance of the MINERvA detector
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
oairecerif.author.affiliation #PLACEHOLDER_PARENT_METADATA_VALUE#
Archivos