Measurement of Ratios of nu(mu) Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2-20 GeV

No hay miniatura disponible
Aliaga, L
Altinok, O
Baldin, B
Baumbaugh, A
Bodek, A
Boehnlein, D
Boyd, S
Bradford, R
Brooks, WK
Budd, H
Título de la revista
Revista ISSN
Título del volumen
American Physical Society
Proyectos de investigación
Unidades organizativas
Número de la revista
We present measurements of νμ charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2<Eν<20GeV, with Eν©=8GeV, which have a reconstructed μ- scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy Eν and flux-integrated differential cross sections with respect to the Bjorken scaling variable x. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative depletion at low x and enhancement at large x. Both become more pronounced as the nucleon number of the target nucleus increases. The data are not reproduced by GENIE, a conventional neutrino-nucleus scattering simulation, or by the alternative models for the nuclear dependence of inelastic scattering that are considered.
This work was supported by the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359 which included the MINERvA construction project. Construction support also was granted by the United States National Science Foundation under Grant No. PHY-0619727 and by the University of Rochester. Support for participating scientists was provided by NSF and DOE (USA) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru), by Latin American Center for Physics (CLAF), by the Swiss National Science Foundation, and by RAS and the Russian Ministry of Education and Science (Russia). We thank the MINOS Collaboration for use of its near detector data. Finally, we thank the staff of Fermilab for support of the beam line and detector.
Palabras clave
Plomo, Partículas Elementales