Publicación:
Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data

dc.contributor.author Song, LH es_PE
dc.contributor.author Chen, F es_PE
dc.contributor.author Young, SR es_PE
dc.contributor.author Schuman, CD es_PE
dc.contributor.author Perdue, G es_PE
dc.contributor.author Potok, TE es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2019
dc.description MINERvA is supported by the Fermi National Accelerator Laboratory under US Department of Energy contract No. DE-AC02-07CH11359 which included the MINERvA construction project. MINERvA construction support was also granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Support for participating MINERvA physicists was provided by NSF and DOE (USA), by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by CONICYT (Chile), by CONCYTEC, DGI-PUCP and IDI/IGIUNI (Peru), and by Latin American Center for Physics (CLAF). This research was supported in part by an appointment to the Oak Ridge National Laboratory ASTRO Program, sponsored by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education.
dc.description.abstract Se presentó un enfoque de aprendizaje profundo para la reconstrucción de vértices de eventos de interacción neutrino-núcleo, un problema en el dominio de la física de alta energía. En este enfoque, combina datos de energía y tiempo que se recopilan en el detector MIN-ERvA para realizar tareas de clasificación y regresión. Demostramos que la red resultante logra una mayor precisión que los resultados anteriores, mientras que requiere un tamaño de modelo más pequeño y menos tiempo de entrenamiento. En particular, el modelo propuesto supera el estado de la técnica en un 4,00% en precisión de clasificación.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1109/ICASSP.2019.8683736
dc.identifier.isi 482554004024
dc.identifier.uri https://hdl.handle.net/20.500.12390/1189
dc.language.iso eng
dc.publisher Institute of Electrical and Electronics Engineers
dc.rights info:eu-repo/semantics/openAccess
dc.subject Física de partículas
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.03.03
dc.title Deep learning for vertex reconstruction of neutrino-nucleus interaction events with combined energy and time data
dc.type info:eu-repo/semantics/conferenceObject
dspace.entity.type Publication
Archivos