Publicación:
Infinitely many solutions for a nonlocal type problem with sign-changing weight function
Infinitely many solutions for a nonlocal type problem with sign-changing weight function
dc.contributor.author | Azroul E. | es_PE |
dc.contributor.author | Benkirane A. | es_PE |
dc.contributor.author | Srati M. | es_PE |
dc.contributor.author | Torres C. | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2021 | |
dc.description.abstract | In this article, we study the existence of weak solutions for a fractional type problem driven by a nonlocal operator of elliptic type (−∆)s a1 u − λa2( | |
dc.description.abstract | u | |
dc.description.abstract | )u = f(x, u) + g(x) | |
dc.description.abstract | u | |
dc.description.abstract | q(x)−2u in Ω u = 0 in R N \ Ω. Our approach is based on critical point theorems and variational methods. | |
dc.description.sponsorship | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec | |
dc.identifier.scopus | 2-s2.0-85103598559 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/2429 | |
dc.language.iso | eng | |
dc.publisher | Texas State University - San Marcos | |
dc.relation.ispartof | Electronic Journal of Differential Equations | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Variational methods | |
dc.subject | Critical point theorems | es_PE |
dc.subject | Fractional Orlicz-Sobolev spaces | es_PE |
dc.subject.ocde | http://purl.org/pe-repo/ocde/ford#1.06.37 | |
dc.title | Infinitely many solutions for a nonlocal type problem with sign-changing weight function | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication |