Publicación:
Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method

dc.contributor.author Chau, Gustavo es_PE
dc.contributor.author Wohlberg, Brendt es_PE
dc.contributor.author Rodriguez, Paul es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2019-01
dc.description.abstract Mixed norms that promote structured sparsity have numerous applications in signal processing and machine learning problems. In this work, we present a new algorithm, based on a Newton root search technique, for computing the projection onto the ℓ∞,1 ball, which has found application in cognitive neuroscience and classification tasks. Numerical simulations show that our proposed method is between 8 and 10 times faster on average, and up to 20 times faster for very sparse solutions, than the previous state of the art. Tests on real functional magnetic resonance image data show that, for some data distributions, our algorithm can obtain speed improvements by a factor of between 10 and 100, depending on the implementation
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1137/18m1212525
dc.identifier.uri https://hdl.handle.net/20.500.12390/1281
dc.language.iso eng
dc.publisher Society for Industrial & Applied Mathematics (SIAM)
dc.relation.ispartof SIAM Journal on Imaging Sciences
dc.rights info:eu-repo/semantics/openAccess
dc.subject regularización de la proyección
dc.subject Normas mixtas es_PE
dc.subject espaciosidad estructurada es_PE
dc.subject encontrar la raíz es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.01.02
dc.title Efficient Projection onto the $\ell_{\infty,1}$ Mixed-Norm Ball Using a Newton Root Search Method
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos