Publicación:
Properties of fractional operators with fixed memory length
Properties of fractional operators with fixed memory length
dc.contributor.author | T. Ledesma C. | es_PE |
dc.contributor.author | V. Baca J. | es_PE |
dc.contributor.author | Sousa J.V.D.C. | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2021 | |
dc.description | César T. Ledesma and Josias V. Baca were partially supported by CONCYTEC, Peru, 379-2019-FONDECYT “ASPECTOS CUALITATIVOS DE ECUACIONES NO-LOCALES Y APLICACIONES.” | |
dc.description.abstract | In this present paper, we discuss some properties of fractional operators with fixed memory length (Riemann–Liouville fractional integral, Riemann–Liouville and Caputo fractional derivatives). Some observations and examples are discussed during the article, in order to make the results well defined and clear. Furthermore, we consider the fundamental theorem of calculus for fractional operators with fixed memory length. © 2021 John Wiley & Sons, Ltd. | |
dc.description.sponsorship | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec | |
dc.identifier.doi | https://doi.org/10.1002/mma.7761 | |
dc.identifier.scopus | 2-s2.0-85113897873 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/3047 | |
dc.language.iso | eng | |
dc.publisher | John Wiley and Sons Ltd | |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | function space | |
dc.subject | fixed memory length | es_PE |
dc.subject | fractional derivative | es_PE |
dc.subject | fractional integral | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.01 | |
dc.title | Properties of fractional operators with fixed memory length | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication |