Publicación:
Properties of fractional operators with fixed memory length

dc.contributor.author T. Ledesma C. es_PE
dc.contributor.author V. Baca J. es_PE
dc.contributor.author Sousa J.V.D.C. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2021
dc.description César T. Ledesma and Josias V. Baca were partially supported by CONCYTEC, Peru, 379-2019-FONDECYT “ASPECTOS CUALITATIVOS DE ECUACIONES NO-LOCALES Y APLICACIONES.”
dc.description.abstract In this present paper, we discuss some properties of fractional operators with fixed memory length (Riemann–Liouville fractional integral, Riemann–Liouville and Caputo fractional derivatives). Some observations and examples are discussed during the article, in order to make the results well defined and clear. Furthermore, we consider the fundamental theorem of calculus for fractional operators with fixed memory length. © 2021 John Wiley & Sons, Ltd.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1002/mma.7761
dc.identifier.scopus 2-s2.0-85113897873
dc.identifier.uri https://hdl.handle.net/20.500.12390/3047
dc.language.iso eng
dc.publisher John Wiley and Sons Ltd
dc.relation.ispartof Mathematical Methods in the Applied Sciences
dc.rights info:eu-repo/semantics/openAccess
dc.subject function space
dc.subject fixed memory length es_PE
dc.subject fractional derivative es_PE
dc.subject fractional integral es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.01.01
dc.title Properties of fractional operators with fixed memory length
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos