Publicación:
Fractional Sobolev space with Riemann–Liouville fractional derivative and application to a fractional concave–convex problem
Fractional Sobolev space with Riemann–Liouville fractional derivative and application to a fractional concave–convex problem
dc.contributor.author | Ledesma C.E.T. | es_PE |
dc.contributor.author | Bonilla M.C.M. | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2021 | |
dc.description | This work was partially supported by CONCYTEC PERU, 379-2019-FONDECYT “ASPECTOS CUALITATIVOS DE ECUACIONES NO-LOCALES Y APLICACIONES” | |
dc.description.abstract | A new fractional function space EL?[a,b] with Riemann–Liouville fractional derivative and its related properties are established in this paper. Under this configuration, the following fractional concave–convex problem: xDb?(aDx?u)=?u?+up,in(a,b)B?(u)=0,in?(a,b)where ?? (0 , 1) , ?? (0 , 1) and p?(1,1+2?1-2?) if ??(0,12) and p? (1 , + ?) if ??(12,1). B?(u) represent the boundary condition of the problem which depend of the behavior of ?? (0 , 1) , that is: B?(u)={limx?a+aIx1-?u(x)=0,if??(0,12)u(a)=u(b)=0,if??(12,1).By using Ekeland’s variational principle and mountain pass theorem we show that the problem (0.1) at less has two nontrivial weak solutions. © 2021, Tusi Mathematical Research Group (TMRG). | |
dc.description.sponsorship | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec | |
dc.identifier.doi | https://doi.org/10.1007/s43036-021-00159-w | |
dc.identifier.scopus | 2-s2.0-85112786087 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/3003 | |
dc.language.iso | eng | |
dc.publisher | Birkhauser | |
dc.relation.ispartof | Advances in Operator Theory | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Variational methods | |
dc.subject | Fractional Riemman–Liouville operators | es_PE |
dc.subject | Fractional Sobolev spaces | es_PE |
dc.subject | Nonlocal problems | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#1.01.02 | |
dc.title | Fractional Sobolev space with Riemann–Liouville fractional derivative and application to a fractional concave–convex problem | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication |