Publicación:
Fractional Sobolev space with Riemann–Liouville fractional derivative and application to a fractional concave–convex problem

dc.contributor.author Ledesma C.E.T. es_PE
dc.contributor.author Bonilla M.C.M. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2021
dc.description This work was partially supported by CONCYTEC PERU, 379-2019-FONDECYT “ASPECTOS CUALITATIVOS DE ECUACIONES NO-LOCALES Y APLICACIONES”
dc.description.abstract A new fractional function space EL?[a,b] with Riemann–Liouville fractional derivative and its related properties are established in this paper. Under this configuration, the following fractional concave–convex problem: xDb?(aDx?u)=?u?+up,in(a,b)B?(u)=0,in?(a,b)where ?? (0 , 1) , ?? (0 , 1) and p?(1,1+2?1-2?) if ??(0,12) and p? (1 , + ?) if ??(12,1). B?(u) represent the boundary condition of the problem which depend of the behavior of ?? (0 , 1) , that is: B?(u)={limx?a+aIx1-?u(x)=0,if??(0,12)u(a)=u(b)=0,if??(12,1).By using Ekeland’s variational principle and mountain pass theorem we show that the problem (0.1) at less has two nontrivial weak solutions. © 2021, Tusi Mathematical Research Group (TMRG).
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1007/s43036-021-00159-w
dc.identifier.scopus 2-s2.0-85112786087
dc.identifier.uri https://hdl.handle.net/20.500.12390/3003
dc.language.iso eng
dc.publisher Birkhauser
dc.relation.ispartof Advances in Operator Theory
dc.rights info:eu-repo/semantics/openAccess
dc.subject Variational methods
dc.subject Fractional Riemman–Liouville operators es_PE
dc.subject Fractional Sobolev spaces es_PE
dc.subject Nonlocal problems es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#1.01.02
dc.title Fractional Sobolev space with Riemann–Liouville fractional derivative and application to a fractional concave–convex problem
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos