Publicación:
Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
dc.contributor.author | Nuruzzaman | es_PE |
dc.contributor.author | Perdue G.N. | es_PE |
dc.contributor.author | Ghosh A. | es_PE |
dc.contributor.author | Wospakrik M. | es_PE |
dc.contributor.author | Akbar F. | es_PE |
dc.contributor.author | Andrade D.A. | es_PE |
dc.contributor.author | Ascencio M. | es_PE |
dc.contributor.author | Bellantoni L. | es_PE |
dc.contributor.author | Bercellie A. | es_PE |
dc.contributor.author | Betancourt M. | es_PE |
dc.contributor.author | Vera G.F.R.C. | es_PE |
dc.contributor.author | Cai T. | es_PE |
dc.contributor.author | Carneiro M.F. | es_PE |
dc.contributor.author | Chaves J. | es_PE |
dc.contributor.author | Coplowe D. | es_PE |
dc.contributor.author | Motta H.D. | es_PE |
dc.contributor.author | Díaz G.A. | es_PE |
dc.contributor.author | Felix J. | es_PE |
dc.contributor.author | Fields L. | es_PE |
dc.contributor.author | Fine R. | es_PE |
dc.contributor.author | Gago A.M. | es_PE |
dc.contributor.author | Galindo R. | es_PE |
dc.contributor.author | Golan T. | es_PE |
dc.contributor.author | Gran R. | es_PE |
dc.contributor.author | Han J.Y. | es_PE |
dc.contributor.author | Harris D.A. | es_PE |
dc.contributor.author | Jena D. | es_PE |
dc.contributor.author | Kleykamp J. | es_PE |
dc.contributor.author | Kordosky M. | es_PE |
dc.contributor.author | Lu X.-G. | es_PE |
dc.contributor.author | Maher E. | es_PE |
dc.contributor.author | Mann W.A. | es_PE |
dc.contributor.author | Marshall C.M. | es_PE |
dc.contributor.author | McFarland K.S. | es_PE |
dc.contributor.author | McGowan A.M. | es_PE |
dc.contributor.author | Messerly B. | es_PE |
dc.contributor.author | Miller J. | es_PE |
dc.contributor.author | Nelson J.K. | es_PE |
dc.contributor.author | Nguyen C. | es_PE |
dc.contributor.author | Norrick A. | es_PE |
dc.contributor.author | Nuruzzaman N. | es_PE |
dc.contributor.author | Olivier A. | es_PE |
dc.contributor.author | Patton R. | es_PE |
dc.contributor.author | Ramírez M.A. | es_PE |
dc.contributor.author | Ransome R.D. | es_PE |
dc.contributor.author | Ray H. | es_PE |
dc.contributor.author | Ren L. | es_PE |
dc.contributor.author | Rimal D. | es_PE |
dc.contributor.author | Ruterbories D. | es_PE |
dc.contributor.author | Schellman H. | es_PE |
dc.contributor.author | Salinas C.J.S. | es_PE |
dc.contributor.author | Su H. | es_PE |
dc.contributor.author | Upadhyay S. | es_PE |
dc.contributor.author | Valencia E. | es_PE |
dc.contributor.author | Wolcott J. | es_PE |
dc.contributor.author | Yaeggy B. | es_PE |
dc.contributor.author | Young S. | es_PE |
dc.date.accessioned | 2024-05-30T23:13:38Z | |
dc.date.available | 2024-05-30T23:13:38Z | |
dc.date.issued | 2018 | |
dc.description | Construction support also was granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Additional support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by Proyecto Basal FB 0821, CONICYT PIA ACT1413, Fondecyt 3170845 and 11130133 (Chile), by PIIC (DGIP-UTFSM), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru) | |
dc.description.abstract | We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from the second domain so that during training only features which are unable to discriminate between the domains are promoted. MINERvA is a neutrino-nucleus scattering experiment using the NuMI beamline at Fermilab. A-dependent cross sections are an important part of the physics program, and these measurements require vertex finding in complicated events. To illustrate the impact of the DANN we used a modified set of simulation in place of physics data during the training of the DANN and then used the label of the modified simulation during the evaluation of the DANN. We find that deep learning based methods offer significant advantages over our prior track-based reconstruction for the task of vertex finding, and that DANNs are able to improve the performance of deep networks by leveraging available unlabeled data and by mitigating network performance degradation rooted in biases in the physics models used for training. | |
dc.description.sponsorship | Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec | |
dc.identifier.doi | https://doi.org/10.1088/1748-0221/13/11/P11020 | |
dc.identifier.scopus | 2-s2.0-85057619219 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12390/587 | |
dc.language.iso | eng | |
dc.publisher | Institute of Physics Publishing | |
dc.relation.ispartof | Journal of Instrumentation | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Physics programs | |
dc.subject | Neural networks | es_PE |
dc.subject | Neutrons | es_PE |
dc.subject | Pattern recognition | es_PE |
dc.subject | Deep convolutional neural networks | es_PE |
dc.subject | Learning classifiers | es_PE |
dc.subject | Learning-based methods | es_PE |
dc.subject | Neutrino detectors | es_PE |
dc.subject | Neutrino interactions | es_PE |
dc.subject | Performance degradation | es_PE |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#3.01.00 | |
dc.title | Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment | |
dc.type | info:eu-repo/semantics/article | |
dspace.entity.type | Publication |