Publicación:
Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment

dc.contributor.author Nuruzzaman es_PE
dc.contributor.author Perdue G.N. es_PE
dc.contributor.author Ghosh A. es_PE
dc.contributor.author Wospakrik M. es_PE
dc.contributor.author Akbar F. es_PE
dc.contributor.author Andrade D.A. es_PE
dc.contributor.author Ascencio M. es_PE
dc.contributor.author Bellantoni L. es_PE
dc.contributor.author Bercellie A. es_PE
dc.contributor.author Betancourt M. es_PE
dc.contributor.author Vera G.F.R.C. es_PE
dc.contributor.author Cai T. es_PE
dc.contributor.author Carneiro M.F. es_PE
dc.contributor.author Chaves J. es_PE
dc.contributor.author Coplowe D. es_PE
dc.contributor.author Motta H.D. es_PE
dc.contributor.author Díaz G.A. es_PE
dc.contributor.author Felix J. es_PE
dc.contributor.author Fields L. es_PE
dc.contributor.author Fine R. es_PE
dc.contributor.author Gago A.M. es_PE
dc.contributor.author Galindo R. es_PE
dc.contributor.author Golan T. es_PE
dc.contributor.author Gran R. es_PE
dc.contributor.author Han J.Y. es_PE
dc.contributor.author Harris D.A. es_PE
dc.contributor.author Jena D. es_PE
dc.contributor.author Kleykamp J. es_PE
dc.contributor.author Kordosky M. es_PE
dc.contributor.author Lu X.-G. es_PE
dc.contributor.author Maher E. es_PE
dc.contributor.author Mann W.A. es_PE
dc.contributor.author Marshall C.M. es_PE
dc.contributor.author McFarland K.S. es_PE
dc.contributor.author McGowan A.M. es_PE
dc.contributor.author Messerly B. es_PE
dc.contributor.author Miller J. es_PE
dc.contributor.author Nelson J.K. es_PE
dc.contributor.author Nguyen C. es_PE
dc.contributor.author Norrick A. es_PE
dc.contributor.author Nuruzzaman N. es_PE
dc.contributor.author Olivier A. es_PE
dc.contributor.author Patton R. es_PE
dc.contributor.author Ramírez M.A. es_PE
dc.contributor.author Ransome R.D. es_PE
dc.contributor.author Ray H. es_PE
dc.contributor.author Ren L. es_PE
dc.contributor.author Rimal D. es_PE
dc.contributor.author Ruterbories D. es_PE
dc.contributor.author Schellman H. es_PE
dc.contributor.author Salinas C.J.S. es_PE
dc.contributor.author Su H. es_PE
dc.contributor.author Upadhyay S. es_PE
dc.contributor.author Valencia E. es_PE
dc.contributor.author Wolcott J. es_PE
dc.contributor.author Yaeggy B. es_PE
dc.contributor.author Young S. es_PE
dc.date.accessioned 2024-05-30T23:13:38Z
dc.date.available 2024-05-30T23:13:38Z
dc.date.issued 2018
dc.description Construction support also was granted by the United States National Science Foundation under Award PHY-0619727 and by the University of Rochester. Additional support for participating scientists was provided by NSF and DOE (U.S.A.) by CAPES and CNPq (Brazil), by CoNaCyT (Mexico), by Proyecto Basal FB 0821, CONICYT PIA ACT1413, Fondecyt 3170845 and 11130133 (Chile), by PIIC (DGIP-UTFSM), by CONCYTEC, DGI-PUCP and IDI/IGI-UNI (Peru)
dc.description.abstract We present a simulation-based study using deep convolutional neural networks (DCNNs) to identify neutrino interaction vertices in the MINERvA passive targets region, and illustrate the application of domain adversarial neural networks (DANNs) in this context. DANNs are designed to be trained in one domain (simulated data) but tested in a second domain (physics data) and utilize unlabeled data from the second domain so that during training only features which are unable to discriminate between the domains are promoted. MINERvA is a neutrino-nucleus scattering experiment using the NuMI beamline at Fermilab. A-dependent cross sections are an important part of the physics program, and these measurements require vertex finding in complicated events. To illustrate the impact of the DANN we used a modified set of simulation in place of physics data during the training of the DANN and then used the label of the modified simulation during the evaluation of the DANN. We find that deep learning based methods offer significant advantages over our prior track-based reconstruction for the task of vertex finding, and that DANNs are able to improve the performance of deep networks by leveraging available unlabeled data and by mitigating network performance degradation rooted in biases in the physics models used for training.
dc.description.sponsorship Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica - Concytec
dc.identifier.doi https://doi.org/10.1088/1748-0221/13/11/P11020
dc.identifier.scopus 2-s2.0-85057619219
dc.identifier.uri https://hdl.handle.net/20.500.12390/587
dc.language.iso eng
dc.publisher Institute of Physics Publishing
dc.relation.ispartof Journal of Instrumentation
dc.rights info:eu-repo/semantics/openAccess
dc.subject Physics programs
dc.subject Neural networks es_PE
dc.subject Neutrons es_PE
dc.subject Pattern recognition es_PE
dc.subject Deep convolutional neural networks es_PE
dc.subject Learning classifiers es_PE
dc.subject Learning-based methods es_PE
dc.subject Neutrino detectors es_PE
dc.subject Neutrino interactions es_PE
dc.subject Performance degradation es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#3.01.00
dc.title Reducing model bias in a deep learning classifier using domain adversarial neural networks in the MINERvA experiment
dc.type info:eu-repo/semantics/article
dspace.entity.type Publication
Archivos