Enhanced antimicrobial activity of silver nanoparticles conjugated with synthetic peptide by click chemistry

No hay miniatura disponible
Barrios-Aranibar D.
Cardinale Y.
Cornejo Lupa M.A.
Ticona-Herrera R.P.
Título de la revista
Revista ISSN
Título del volumen
Proyectos de investigación
Unidades organizativas
Número de la revista
Strategies to design novel antibacterial materials may rely on the combination of materials to achieve synergistic effects. The coupling of antibacterial peptides to nanoparticles, however, needs to be directed conveniently to avoid structural changes within the peptide and/or degradation of the nanoparticle. Here, we present the results of the attachment of a synthetic peptide (VIHGW-alkyne-G-NH2) containing the amino terminal copper and nickel (ATCUN) motif to silver nanoparticles. In order to direct the peptide-nanoparticle coupling, the peptide was functionalized with an alkyne, whereas the nanoparticles were functionalized with azide groups using thiol-polyethylene glycol-azide (HS-PEG-N3) chains, so that the acetylide and the azide can undergo a click reaction. The reaction was conducted at room temperature and the steps in the construction of the nanoparticle-PEG-ATCUN array were followed by a combination of UV-Vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), and infrared spectroscopy. Evidence of the attachment of the PEG molecules through the thiol termination indicates that the nanoparticle is functionalized with azide groups, although only partially. The click reaction with the synthetic peptide is evidenced by the loss of the N3-vibrational signal with infrared spectroscopy. Throughout the steps of the synthesis, the behavior of the nanoparticles was followed by UV-Vis spectroscopy, dynamic light scattering, and zeta potential measurements, observing that during the process there are no significant changes in the size of the nanoparticle and that the stability of the nanoparticles increases. Antibacterial tests, conducted using E. coli, showed that the activity of the Ag-PEG-ATCUN nanocomposites is higher than that of nanoparticles and ATCUN peptides separately. [Figure not available: see fulltext.]. © 2020, Springer Nature B.V.
Palabras clave
Synthetic peptide, Antimicrobial activity, ATCUN, Click chemistry, Environmental and health effects, Escherichia coli, Silver nanoparticles