Bienvenido al Repositorio Institucional del Concytec

El Repositorio Institucional del Concytec tiene como objetivo permitir el libre acceso a la producción científica institucional, optimizando su visibilidad; así mismo garantizar la preservación y conservación de la información relacionada a la ciencia, tecnología e innovación.



Display.item.jsp


Por favor, utiliza este identificador para citar o enlazar este ítem:
http://hdl.handle.net/20.500.12390/2880


Título: Descriptive set theory for expansive systems
Autor(es): Bautista, S. 
Morales, C. A. 
Villavicencio, H. 
Resumen: Kato [5] and Artigue [3] merged the theory of expansive systems [10] and foliations with the continuum theory [14]. Here we merge the expansive systems but with the descriptive set theory [6] instead. More precisely, we define meagre-expansivity for both homeomorphisms and measures by requiring the interior of the dynamical balls up to some prefixed radio to be either empty or with zero measure respectively. We first prove that every cw-expansive homeomorphism of a locally connected metric space without isolated points is meagre-expansive (but not conversely). Second that a homeomorphism of a metric space is meagre-expansive if and only if every Borel probability measure is meagre-expansive. Next that the space of meagre-expansive measures of a homeomorphism of a compact metric space X is an Fσ subset of the space of Borel probability measures equipped with the weak* topology. In the sequel we prove that every homeomorphism with a meagre-expansive measure of a compact metric space has an invariant meagre-expansive measure. Also that the set of periodic points of every meagre-expansive homeomorphism of a compact metric space has empty interior. In the circle or the interval we prove that there are no meagre-expansive homeomorphisms of the circle or the interval. Moreover, the meagre-expansive measures of an interval homeomorphism or a circle homeomorphism with rational rotation number are precisely the finite convex combinations of Dirac measures supported on isolated periodic points. A circle homeomorphism with irrational rotation number has a meagre-expansive measure if and only if it is a Denjoy map. In such a case the meagre-expansive measures are precisely those measures supported on the unique minimal set of the map. To obtain some of our results we will consider a measurable version of the classical Baire Category. © 2017 Elsevier Inc.
Tema: Applied Mathematics;Analysis
Editorial: Elsevier BV
Fecha de publicación: 2018
Publicado en: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 
Financiamiento: CONV-000217-2014-FONDECYT-DE 
Tipo de publicación: info:eu-repo/semantics/article
Identificador Handle: http://hdl.handle.net/20.500.12390/2880
DOI: 10.1016/j.jmaa.2017.12.014
Nivel de acceso: info:eu-repo/semantics/closedAccess
Colección:2.1 Estudios de doctorado y postdoctorado

Registro Dublin Core completo



Páginas vistas

9
marcado en 27-nov-2021

Google ScholarTM

Check

Altmetric

  • Compartir este item
  • QR Code

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.